

Innovation & Technology Forum

T53 - Design Considerations for Reliable EtherNet/IP Networking Petr DRAHOTA

Commercial Engineer Power & Componets

Agenda

Challenges Associated with Technology Convergence

Challenges Associated with Technology Convergence

Scalable, Reliable, Safe and Secure Architectures for The Connected Enterprise

A reliable and secure architecture from an ecosystem of partners is critical to building a Connected Enterprise.

Rockwell Automation Rockwell Automation

Rockwell Automation Rockwell Automation PartnerNetwork

Rockwell Automation Rockwell Automation PartnerNetwork

Ether et/IP

Industrial IoT (IIoT) – IACS Convergence

Challenges Associated with Technology Convergence

Industrial IoT (IIoT) – IACS Convergence

Challenges Associated with Technology Convergence

Plant-wide Industrial Ethernet Deployments

- Single network technology for industrial automation and control system (IACS) control and information disciplines – e.g. drive, safety and motion
 - Different performance and resiliency requirements between IACS disciplines
- Migration from isolated LANs to large flat and open LANs:
 - Loss of boundaries and natural segmentation
 - Network sprawl lack of design discipline

Open Doesn't Mean Easy; Standard Doesn't Mean Foolproof

- Open by default must secure by design, architecture and configuration
- Varying implementations of Layer 2/3 network services within and across IIoT technologies may create incompatibilities
- Customers required to invest in their own test labs to validate technology and products to meet their application requirements

IACS Application Requirements

Challenges Associated with Technology Convergence

What is secure?

What is real-time?

What is resilient?

	Process Automation	Discrete Automation	Loss Critical
Function	Slower Process Automation	Discrete Automation	Multi-axis Motion Control
Communication Technology	.Net, DCOM, TCP/IP	Industrial Protocols - CIP	Hardware and Software solutions, e.g. CIP Motion, PTP
Period	10 ms to 1 second or longer	1 ms to 100 ms	100 µs to 10 ms
Industries	Oil & Gas, chemicals, energy, water	Auto, food and beverage, semiconductor, metals, pharmaceutical	Subset of Discrete automation
Applications	Pumps, compressors, mixers; monitoring of temperature, pressure, flow	Material handling, filling, labeling, palletizing, packaging; welding, stamping, cutting, metal forming, soldering, sorting	Synchronization of multiple axes: printing presses, wire drawing, web making, picking and placing

- Only you can define what this means for your application.
- Application dependent.
- One size does not fit all!

Source: ARC Advisory Group

Rockwei

tomatio

Balancing Cost vs. Risk vs. Productivity

Challenges Associated with Technology Convergence

Stance on Availability, Safety and Security

- Drivers for risk management policies and overall risk tolerance:
 - Business practices
 - Corporate / local standards
 - Application requirements
 - Applicable industry standards
 - e.g. NERC CIP
 - Government regulations and compliance
 - Industry Standards

- Enterprise and industrial policies and procedures (safety and security), for access control (avoidance of back doors) and network ownership
 - Alignment with industrial functional safety standards such as <u>IEC 61508</u>, <u>IEC 62061</u> (SIL), <u>ISO 13849</u> (PL)
 - Alignment with industrial security standards such as <u>IEC-62443</u> (formerly ISA99), <u>NIST 800-82</u> and <u>ICS-</u> <u>CERT</u>
 - Network capabilities (zone segmentation into domains of trust)

PUBLIC Copyright © 2019 Rockwell Automation, Inc. All Rights Reserved

Industrial IoT (IIoT) – IACS Convergence

Challenges Associated with Technology Convergence

Large LAN, Lacking Natural Boundaries and Segmentation

Flat, Open and Non-Resilient IACS Network Infrastructure

Smaller Connected LANs to Create Boundaries and Segmentation

Plant-wide / Site-wide Network Integrated Architecture – Intelligent Motor Control

Structured and Hardened

IACS Network Infrastructure

Rockwel

Automati

OT-IT Collaboration / Convergence

Challenges Associated with Technology Convergence

OT-IT Collaboration / Convergence

Challenges Associated with Technology Convergence

Technology Differences

- Software and hardware toolsets
- Varying implementations of Layer 2/3 network services may create incompatibilities
 - Availability, Performance, Traffic Types, Security

Cultural Differences

- Availability SLA (service level agreement)
 - Minutes/Hours vs. Hours/Days
- Policies
 - Security CIA vs. AIC
 - QoS prioritization of voice and video
 - NAT, Multicast

- Skill-gaps Workforce Development
 - OT personnel with knowledge of IT skills and requirements
 - IT personnel with knowledge of OT skills and requirements
 - Lack of Industrial IT personnel
- Functional Differences and Incompatibilities between IT:
 - Technologies e.g. resiliency
 - Products e.g. QoS policies
 - Applications e.g. WebEx and Skype
 - Solutions e.g. network access control

Differences

Challenges Associated with Technology Convergence

Criteria	Industrial OT Network	Enterprise IT Network
Environment	 Plant-floor Control Room Control Panel, Industrial Distribution Frame (IDF) 	 Carpeted Space, Data Center Data Communication or Wiring Closet, Intermediate Distribution Frame (IDF)
Switches	 Managed and unmanaged Layer 2 is predominant DIN rail or panel mount is predominant 	 Managed Layer 2 and Layer 3 Rack mount
Wireless	 Autonomous (locally managed) – point solutions Mobile equipment (emerging) and personnel (prevalent) 	 Unified (centrally managed) solutions Mobile personnel – corporate provided or BYOD Guest access
Computing	 Industrial Hardened Panel Mount Computers and Monitors Desktop, Notebook 19" Rack Server Virtualization - becoming prevalent Hardening – sporadic patching and white listing 	 Desktop, Notebook Tablets 19" Rack Server and Blade Server Unified Computing Systems (UCS) Virtualization – widespread Hardening - patching and white listing
PUBLIC Copyright	© 2019 Rockwell Automation, Inc. All Rights Reserved	Automation

Differences Challenges Associated with Technology Convergence

Criteria	Industrial OT Network	Enterprise IT Network
Network Technology	 Standard IEEE 802.3 Ethernet and proprietary (non-standard) versions Standard IETF Internet Protocol (IPv4) and proprietary (non-standard) alternatives Sporadic use of standard Layer 2 and Layer 3 network and security services 	 Standard IEEE 802.3 Ethernet Standard IETF Internet Protocol (IPv4 and IPv6) Pervasive use of standard Layer 2 and Layer 3 network and security services
Network Availability	 Switch-Level and Device-Level topologies Ring topology is predominant for both, Redundant Star for switch topologies is emerging Standard IEEE, IEC and vendor specific Layer 2 resiliency protocols 	 Switch-Level topologies Redundant Star topology is predominant Standard IEEE, IETF, and vendor specific Layer 2 and Layer 3 resiliency protocols
Service Level Agreement (SLA)	 Mean time to recovery (MTTR) - Minutes, Hours 	 Mean time to recovery (MTTR) - Hours, Days
IP Addressing	Mostly Static	Mostly Dynamic
PUBLIC Copyright © 2019 I	Rockwell Automation, Inc. All Rights Reserved	Automation

Differences

Challenges Associated with Technology Convergence

Criteria	Industrial OT Network	Enterprise IT Network
Traffic Type	 Primarily local – traffic between local assets Information, control, safety, motion, time synchronization, energy management Smaller Ethernet frames for control traffic Industrial application layer protocols: CIP, Profinet, IEC 61850, Modbus TCP, etc. 	 Primarily non-local – traffic to remote assets Voice, Video, Data Larger IP packets and Ethernet frames Standard application layer protocols: HTTP, SNMP, DNS, RTP, SSH, etc.
Performance	 Low Latency, Low Jitter (1 ms, 100s ns) Data Prioritization – QoS – Layer 2 and 3 	 Low Latency, Low Jitter (100s ms, 10s ms) Data Prioritization – QoS – Layer 3
Security	 Open by default, must secure by design, architecture and configuration Industrial security standards – e.g. IEC, NIST Inconsistent deployment of security policies No line-of-sight to the Enterprise or to the Internet 	 Pervasive Enterprise security best practices Strong security policies Line-of-sight across the Enterprise and to the Internet

Rockwell

Differences

Challenges Associated with Technology Convergence

Criteria	Industrial OT Network	Enterprise IT Network
Focus	24/7 operations, high OEE	Protecting intellectual property and company assets
Precedence of Priorities	Availability Integrity Confidentiality	Confidentiality Integrity Availability
Types of Data Traffic	Converged network of data, control, information, safety and motion	Converged network of data, voice and video
Access Control	Strict physical access Simple network device access	Strict network authentication and access policies
Implications of a Device Failure	Production is down (\$\$'s/hour or worse)	Work-around or wait
Threat Protection	Isolate threat but keep operating	Shut down access to detected threat
Upgrades	Scheduled during downtime	Automatically pushed during uptime

Industrial Network Design Methodology Structured and Hardened Network Infrastructure

Industrial Network Design Methodology

Structured and Hardened Network Infrastructure

• Understand application and functional requirements

- Devices to be connected industrial and non-industrial
- Data requirements for availability, integrity and confidentiality
- Communication patterns, topology and resiliency requirements
- Types of traffic information, control, safety, time synchronization, drive control, voice, video
- Develop a logical framework (zoning)
 - Define zones and segmentation (smaller connected LANs), place applications and devices in the logical framework based on requirements
 - Migrate from flat, open and non-resilient networks to structured and hardened networks
- Develop a physical framework to align with the logical framework
- Deploy a holistic and diverse defense-in-depth security model
- Reduce risk, simplify design, and speed deployment:
 - Use information technology (IT) and operational technology (OT) standards
 - Use reference models and reference architectures

Avoiding Network Sprawl!!

Convergence-Ready OEM Solutions

Reference Architectures

Structured and Hardened Network Infrastructure

What are reference architectures?

 Baseline architectures, considerations and best practices for design and implementation.

Reference Architectures:

- Marketectures high-level marketing illustrations
- White papers and knowledgebase articles based on proof of concept (PoC) testing
- <u>Accelerator Toolkits</u>:
 - Examples Drives and Motion, Water Wastewater, Safety, Energy Management
- <u>System Configuration Drawings</u>
 - Examples Stratix[®], MCC, Wi-Fi, ControlLogix[®]
- <u>Converged Plantwide Ethernet (CPwE) Architectures</u>:
 - Cisco / Rockwell Automation Strategic Alliance
 - Tested and Validated Architectures
 - Test labs Cisco, Rockwell Automation and Panduit
 - White papers, design guides, application guides

Rockwei

Cisco and Rockwell Automation®

Structured and Hardened Network Infrastructure

Plant of the Future - Common Technology View:

A single scalable architecture, using open and standard Ethernet, IP and Wi-Fi networking technologies, enabling the Industrial Internet of Things (IIoT) to help achieve the flexibility, visibility and efficiency required in a competitive manufacturing environment.

Converged Plantwide Ethernet (CPwE) Architectures:

Collection of tested and validated architectures developed by subject matter authorities at Cisco and Rockwell Automation. The content of CPwE is relevant to both operational technology (OT) and information technology (IT) disciplines. CPwE consists of documented architectures, best practices, design guidance and configuration settings to help manufacturers with development and deployment of a scalable, reliable, safe, secure and future-ready plant-wide industrial network infrastructure.

Joint Product Collaboration:

Combining the best of Rockwell Automation and Cisco - Stratix® 2500/Stratix 5000/Stratix 8000 families of managed industrial Ethernet switches, Stratix 5950 Security Appliance, and Stratix 5900 Services Router.

Workforce Development - People and Process Optimization:

Education, training, certifications and services to help facilitate OT and IT technology, network and cultural convergence.

Rockwell Automation

Strategic

20

Alliance EtherNet/IP

Key Tenet Smart IIoT Endpoints EtherNet/IP Network Technology and Devices

Single Industrial Network Technology

Smart IIoT Endpoints – EtherNet/IP: Network Technology and Devices

	ISO		Open Systems Interconnection	Industrial Internet of Things (IIoT)
Layer No.		Layer Name	Function	Examples
Layer 7		Application	Network Services to User App	CIP - IEC 61158
Layer 6		Presentation	Encryption/Other processing	
Layer 5		Session	Manage Multiple Applications	
Layer 4		Transport	Reliable End-to-End Delivery Error Correction	IETF TCP/UDP
Layer 3	Routers	Network	Logical Addressing, Packet Delivery, Routing	IETF IP
Layer 2	Switches	Data Link	Framing of Data, Error Checking	IEEE 802.3/802.1/802.11
Layer 1	Cabling/RF	Physical	Signal type to transmit bits, pin-outs, cable type	IEEE : TIA-1005

5-Layer TCP/IP Model

Single Industrial Network Technology

EtherNet/IP^{*}

Smart IIoT Endpoints – EtherNet/IP: Network Technology and Devices

Industrial Application Convergence

Smart IIoT Endpoints – EtherNet/IP: Network Technology and Devices

Single Industrial Network Technology

Industrial Application Convergence

Smart IIoT Endpoints – EtherNet/IP: Network Technology and Devices

Industrial Internet of Things (IIoT)

EtherNet/IP Device Selection

Smart IIoT Endpoints – EtherNet/IP: Network Technology and Devices

ODVA

- Conformance tested, with declaration of conformity
- PlugFest interoperability testing in a full multi-vendor system configuration

Selection of Controllers

- # EtherNet/IP ports, types, topology
- Environment: on-machine / in-panel
- Communication speed
- Maximum # of nodes
- Minimum requested packet interval (RPI)
- Maximum I/O data size per RPI

- Selection of Sensor / Actuators
 - Application Requirements
 - Environment: on-machine / in-panel
 - # EtherNet/IP ports, types, topology
 - Communication speed
 - Minimum RPI (how fast)
 - Maximum I/O Data Size per RPI
- Selection Tools
 - Integrated Architecture Builder (IAB)
 - EtherNet/IP Capacity Tool
 - System Configuration Drawings (PCDs)

EtherNet/IP Advantage

Smart IIoT Endpoints – EtherNet/IP: Network Technology and Devices

- Single industrial network technology for:
 - <u>Multi-discipline Network Convergence</u> Discrete, Continuous Process, Batch, Motor, Safety, Motion, Power, Time Synchronization, Supervisory Information, Asset Configuration/Diagnostics
- Established
 - Risk reduction broad availability of products, applications and vendor support
 - ODVA: Cisco Systems[®], Endress+Hauser, Rockwell Automation[®] are principal members
 - Supported Conformance testing, defined QoS priority values for EtherNet/IP devices
- Standard IEEE 802.3 Ethernet and IETF TCP/IP Protocol Suite
 - Enables convergence of OT and IT common toolsets (assets for design, deployment and troubleshooting) and skills/training (human assets)
 - Topology and media independence <u>flexibility and choice</u>
 - Device-level and switch-level topologies; copper fiber wireless
- Portability and routability <u>seamless plant-wide / site-wide information sharing</u>

- No data mapping – simplifies design, speeds deployment and reduces risk

Key Tenet Zoning (Segmentation)

Structured and Hardened Network Infrastructure

Zoning (Segmentation)

Smaller Connected LANs to help:

- Minimize network sprawl
- Modular building block approach for scalable, reliable, safe, secure and future-ready network infrastructure
- Segment Industrial IoT Technologies
- Smaller Layer 2 broadcast domains
 - Restrict Layer 2 broadcast traffic
 - Smaller fault domains (e.g. Layer 2 loops)
 - Smaller domains of trust (security)

- Multiple techniques to create smaller network building blocks (Layer 2 domains)
 - Logical zoning geographical and functional organization of IACS devices
 - Multiple network interface cards (NICs) e.g. CIP bridge
 - Campus network model multi-tier switch hierarchy Layer 2 and Layer 3
 - Virtual Local Area Networks (VLANs) with Access Control Lists (ACLs), Firewalls
 - Network Address Translation (NAT)
 - Software-Defined Segmentation via Security Group Tagging (SGT)

Key Tenet Logical Zoning (Segmentation)

CPwE Logical Model - Built on Technology and Industry Standards Logical Zoning (Segmentation)

OT Standards

Operational Levels

- ISA 95, Purdue Levels 0-5
 - Level 0 Sensor/Actuators
 - Level 1 Controller
 - Level 2 Local Supervisor
 - Level 3 Site Operations
 - Levels 4-5 Enterprise
- Functional / Security Zones
 - IEC-62443, NIST 800-82, DHS/INL/ICS-CERT
 - Enterprise, Industrial, IDMZ
 - Industrial Subzones Cell/Area, Site Operations

IT Standards

- Network Technology
 - OSI Reference Model 7 Layers
 - IEEE 802.1, 802.3, 802.11
 - IETF TCP, UDP, IP
- Network Switch Hierarchy
 - Campus Network Model
 - Layer 2 Access
 - Layer 3 Distribution/Aggregation
 - Layer 3 Core

Zones

Logical Zoning (Segmentation)

Automation

- Levels ISA 95, Purdue Reference Model
- Zones IEC 62443, NIST 800-82, DHS/INL/ICS-CERT Recommended Practices
 Rockwell

PUBLIC Copyright © 2019 Rockwell Automation, Inc. All Rights Reserved

Plant-wide Functional / Security Zoning

Logical Zoning (Segmentation)

Plant-wide Zoning

- Functional / Security Areas
- Smaller Connected LANs
 - Smaller Broadcast Domains
 - Smaller Fault Domains
 - Smaller Domains of Trust
- IEC 62443-3-2 Security Zones and Secure Conduits Model
- DHS/INL/ICS-CERT Best Practices
- Industrial IoT Technology
- Building Block Approach for Scalability

Plant-wide Functional / Security Zoning

Logical Zoning (Segmentation)

Key Tenet Segmentation – Network Services

Islands of Automation with Isolated Local Area Networks (LANs) Segmentation – Network Services

Automatio
Multiple Network Interface Cards (NICs) - CIP™ Bridge

Segmentation – Network Services

Benefits

- Clear network ownership demarcation line
- Challenges
 - Limited visibility to control network devices for asset management
 - Limited future-ready capability
 - Smaller PACs may not support

- Benefits
 - Plant-wide information sharing for data collection and asset management
 - Future-ready
- Challenges
 - Blurred network ownership demarcation line

Multiple Network Interface Cards (NICs) - CIP™ Bridge

Segmentation – Network Services

Benefits

- Clear network ownership demarcation line
- Challenges
 - Limited visibility to control network devices for asset management
 - Limited future-ready capability
 - Smaller PACs may not support

- Benefits
 - Plant-wide information sharing for data collection and asset management
 - Future-ready
- Challenges
 - Blurred network ownership demarcation line

Layer 2 Collision Domains

Segmentation – Network Services

Layer 2 Broadcast Domains - Switch Hierarchy

Segmentation – Network Services

Switch Hierarchy, Virtual LANs (VLANs)

Segmentation – Network Services

Large Flat LAN Larger Layer 2 Broadcast Domain

Small Connected LANs Smaller Layer 2 Broadcast Domains

PUBLIC Copyright © 2019 Rockwell Automation, Inc. All Rights Reserved

Rockwell

Automation

Segmentation – Network Services

- Layer 2 network service, VLANs segment a network logically without being restricted by physical connections
 - VLAN established within or across switches
- Data is only forwarded to ports within the same VLAN
 - Devices within each VLAN can only communicate with other devices on the same VLAN
- Segments traffic to restrict unwanted broadcast and multicast traffic
- Software configurable using managed switches
- Benefits
 - Ease network changes minimize network cabling
 - Simplifies network security management domains of trust
 - Increase efficiency

Segmentation – Network Services

Layer 2 VLAN Trunking

- Independent of physical switch location
- Logically group assets by type, role, logical area, physical area or a hybrid of these
- Devices communicate as if they are on the same physical segment no re-cabling required
- Software configurable using managed switches
- A Layer 3 device (Router or Layer 3 switch) is required to forward traffic between different VLANs
 Inter-VLAN routing

Segmentation – Network Services

Trunking Methods

IEEE 802.1Q, generally referred to as "dot1q"

PUBLIC Copyright © 2019 Rockwell Automation, Inc. All Rights Reserved

Segmentation – Network Services

VLAN Trunking Protocol (VTP)

- Provides centralized VLAN management, runs only on trunks
- Three modes:
 - Server: updates clients and servers
 - Client: receive updates cannot make changes
 - Transparent: allow updates to pass through

Use VTP transparent mode to decrease potential for operational error

- Define VLANs at each switch, no centralized management

Switch Hierarchy, Virtual LANs (VLANs)

Segmentation – Network Services

- Multi-Layer Switch
 - Layer 2 VLAN Trunking
 - Layer 3 Inter-VLAN routing

Rockwell

Automatio

Design and Implementation Considerations

Segmentation – Network Services

VLANs

- Segment different traffic types into separate VLANs (Control & Information, VoIP, HTTP)
- Create smaller IP Subnet (/24 prefix) per VLAN
- Within the Cell/Area Zone
 - Use Layer 2 VLAN trunking between switches with similar traffic types
 - When trunking, use 802.1Q, VTP in transparent mode
- Use Layer 3 Inter-VLAN routing/switching
 - Between VLANs within the same Cell/Area zone
 - Between zones
- Assign different traffic types to a unique VLAN, other than VLAN 1

IP Subnets - Network Address Translation (NAT)

Segmentation – Network Services

- Network Address Translation is a service which can translate a packet from one IP address to another IP address
- Can be a Layer 2 or Layer 3 device
- Has two forms:
 - One to One (1:1) Allows for the assignment of a unique outside IP address to a specific inside IP address
 - One to Many (1:n) a.k.a. TCP/UDP Port Address Translation (PAT). Allows Multiple devices to share one "Outside" address

Segmentation

Segmentation – Network Services

IPv4 Header

Automation

Why use Network Address Translation (NAT) ?

Segmentation – Network Services

Allows a single device to act as an agent between the Plant (Outside) network and the Equipment/Skid/Machine (Inside) network.

- Helps simplify integration of IP address mapping from a equipment/skid/machine level IP addresses to the plant network.
- Allows OEMs to develop standard equipment/skids/machines and eliminate the need for unique IP addressing and code modifications.
- Allows End Users to more easily integrate equipment/skids/machines into their larger plant network without extensive coordination with OEMs.
- Provides better maintainability at the equipment/skids/machines as they remain standard.
- Allows for reuse of IP addresses allowing for more connected devices in a limited address pool.
 PUBLIC COPYRIGHT © 2019 Rockwell Automation, Inc. All Rights Reserved

Layer 3 vs Layer 2 NAT Devices

Segmentation – Network Services

Layer 2 NAT Device Key Points

- Hardware based implementation, performance is at wire speed throughout switch loading
- NAT device does not act as a router and utilizes 2 translations tables – inside to outside & outside to inside
 - Supports multiple VLANs through NAT boundary enhancing segmentation flexibility (communication between VLANS requires a separate layer 3 device)
- Broadcast traffic in a VLAN can propagate through the NAT boundary
- Untranslated traffic, including multicast, can be permitted through the NAT boundary

Layer 3 NAT Device Key Points

- Typically a software implementation, performance of translation directly tied to the loading of the NAT CPU
- NAT device acts as the default gateway (router) for the devices on the inside network
 - NAT device will intercept traffic, perform translation, and route traffic
- Broadcast traffic is stopped at the NAT boundary
- Untranslated traffic is not permitted through the NAT device

Network Address Translation (NAT)

Segmentation – Network Services

Automatio

Network Address Translation (NAT) Limitations

Segmentation – Network Services

These applications are not supported, which is typical for all NAT devices:

- Traffic encryption and integrity checking protocols generally incompatible with NAT (for example, IPsec transport mode)
- Applications that use dynamic session initiations, such as NetMeeting
- File Transfer Protocol (FTP)
- Microsoft[®] Distributed Component Object Model (DCOM), which is used in Open Platform Communication (OPC)
- Multicast I/O and Multicast Produced Consumed traffic
- IEEE 1588 PTP unless the NAT-enabled switch is in boundary mode

No Segmentation (not recommended)

Segmentation – Network Services

54

PUBLIC Copyright © 2019 Rockwell Automation, Inc. All Rights Reserved

multiple network interface Cards (NICS) - CIP Bridge Segmentation

Segmentation – Network Services

55

PUBLIC Copyright © 2019 Rockwell Automation, Inc. All Rights Reserved

Layer 3 NAT Appliance Segmentation

Segmentation – Network Services

Layer 3 NAT - Integrated Services Router Segmentation

Segmentation – Network Services

57

PUBLIC Copyright © 2019 Rockwell Automation, Inc. All Rights Reserved

VLAN Segmentation without NAT

Segmentation – Network Services

PUBLIC Copyright © 2019 Rockwell Automation, Inc. All Rights Reserved

VLAN Segmentation with Layer 2 NAT

Segmentation – Network Services

PUBLIC Copyright © 2019 Rockwell Automation, Inc. All Rights Reserved

Automation

Design and Implementation Considerations

Segmentation – Network Services

- Design smaller modular building blocks to help create functional / security zones
 - Minimize network sprawl
 - Build scalable, robust and future-ready network infrastructure
 - Smaller Connected LANs
 - Smaller fault domains (e.g. Layer 2 loops)
 - Smaller broadcast domains
 - Smaller domains of trust (security)
 - Segment Industrial IoT Technologies
- Multiple techniques to create smaller network building blocks (Layer 2 domains)
 - Logical zoning, Multiple NICs
 - Campus network model multi-tier switch hierarchy Layer 2 and Layer 3
 - Virtual Local Area Networks (VLANs), Network Address Translation (NAT)
 - Firewalls

Key Tenet Managed Infrastructure

Industrial Ethernet Switch Type Selection

Managed Infrastructure

	Advantages	Disadvantages
Managed Switches	 Loop prevention and resiliency Security services Management services (Multicast, DHCP per port and DLR) Diagnostic information Segmentation services (VLANs) Prioritization services (QoS) 	 More expensive Requires some level of support and configuration to start up
Unmanaged Switches	InexpensiveSimple to set up	 No loop prevention or resiliency No security services No diagnostic information No segmentation or prioritization services Difficult to troubleshoot, no management services
ODVA Embedded Switch Technology	 Cable simplification with reduced cost Ring loop prevention and resiliency Prioritization services (QoS) Time Sync Services (IEEE 1588 PTP Transparent Clock) Diagnostic information 	 Limited management capabilities May require minimal configuration

Managed Infrastructure Selection

Managed Infrastructure

Managed Switches

- Access switching or distribution routing
- Diagnostic information
- Network Address Translation (NAT)
- Segmentation / VLAN capabilities
- Prioritization services (QoS)
- Network resiliency

Security Appliances

- Secure real-time control communication
- Routing and firewall capabilities
- Intrusion protection
- Access control lists

Manageability by OT and IT tools

- Topologies Switch-level and device-level
- Switching network services
- Routing connected, static, dynamic
- Wireless Access Points Autonomous and Unified Architectures
- Security Appliances Industrial firewalls with inspection profiles for EtherNet/IP deep packet inspection (DPI)

Key Tenet Resiliency

Networking Design Considerations

Resiliency

Redundant Ethernet Networks

- Independent LANs
- Independent Paths

Resilient Path Ethernet Network

- Common LAN
- Redundant Paths
- Resiliency Protocol

Layer 2 – Loop Avoidance

Resiliency

Redundant paths create a switching (bridging) loop

- Without proper configuration, a loop will lead to a broadcast storm, flooding the network, which will consume available bandwidth, and take down a Layer 2 switched (bridged) network
 - Layer 2 Ethernet frames do not have a time-to-live (TTL)
 - A Layer 2 frame can loop forever

Layer 2 – Loop Avoidance Resiliency

 A Layer 2 resiliency protocol maintains redundant paths while avoiding switching (bridging) loop

Layer 2 – Loop Avoidance Resiliency

 Network convergence (healing, recovery, etc.) must occur before the Industrial Automation and Control System (IACS) application is impacted

Network Convergence

Resiliency

- Network convergence (healing, recovery, etc.) time is a measure of how long it takes to detect a fault, find an alternate path, then start forwarding network traffic across that alternate path.
 - MAC tables must be relearned
 - Multicast on uplinks must be relearned
- During the network convergence time, some portion of the traffic is dropped by the network because interconnectivity does not exist.
- If the convergence time is longer than the Logix controller connection timeout, the IACS devices on the affected portion of the network may stop operating and may affect the IACS application.

Layer 2 – Loop Avoidance Resiliency

Link Failure Forwarding

- Network convergence must occur quickly enough to avoid a IACS connection timeout:
 - Message (MSG) instruction
 - Instruction timeout 30 second default
 - I/O and Producer/Consumer
 - Connection timeout 4 x RPI, with a minimum of 100 ms
 - Safety I/O
 - Connection timeout 4 x RPI by default

70

Layer 2 – Loop Avoidance Resiliency

Don't forget about potential loops on the switch itself

PUBLIC Copyright © 2019 Rockwell Automation, Inc. All Rights Reserved

Redundant Path Topologies with Resiliency Protocols Resiliency

Device-level Topologies

Rockwell Automation 72
Networking Design Considerations - Topology Choice Resiliency

Choice

Resiliency

Resiliency Protocol	Mixed Vendor	Ring	Redundant Star	Network Convergence > 250 ms	Network Convergence 60 - 100 ms	Network Convergence 1 - 3 ms	Layer 3	Layer 2
STP (802.1D)	X	X	X					X
RSTP (802.1w)	X	X	X	Х	Process ar	nd Information		X
MSTP (802.1s)	X	X	X	Х				X
rPVST+		X	X	Х				X
REP		X			X	Time Critical		X
EtherChannel (LACP 802.3ad)	x		X		X			X
Flex Links			X		X			X
DLR (IEC & ODVA)	X	X				X	Los	s Critical
StackWise		X	X			X	X	X
HSRP		X	X	X			X	
GLBP		X	X	X			X	
VRRP (IETF RFC 3768)	X	X	X	X			X	

Choice

Resiliency

networking Design Considerations – Topology / Technology Choice

Resiliency

PUBLIC Copyright © 2019 Rockwell Automation, Inc. All Rights Reserved

Parallel Redundancy Protocol

Resiliency

What is PRP?

- PRP, Parallel Redundancy Protocol, IEC standard 62439-3
- Fault tolerant, fully redundant Ethernet infrastructure
- Same frame is sent (replicated) on both LANs
- Zero network healing time for a single fault
- What are some typical applications for PRP?
 - Where redundant network infrastructure, independent LANs, independent Paths, are desired
 - Process applications heavy industries

PRP General

Resiliency

- DAN, Dually Attached Node, has PRP protocol built in and attaches to both LANs
 One IP address, one MAC ID
- SAN, Singly Attached Node, is a node that does not have PRP built, attaches to one LAN
- RedBox: connects non-PRP devices to the PRP networks
- VDANs: non-PRP devices connected to both LANs through a RedBox
- Standard switch must support the baby jumbo frame size of 1506 bytes

Design and Implementation Considerations

Resiliency

Choice is Application Dependent

- Switch-level vs. Device-level topologies
- Ring vs. Redundant Star Topology
- Mixed switch vendor environment Legacy Migration
- Geographic dispersion of IACS devices
- Location within the hierarchal architecture Layer 2 vs. Layer 3
- Performance
 - Tolerance to: Network Convergence time, Packet loss, Latency & Jitter

- Redundant Path Topologies Require a Resiliency Protocol
 - Switch-level Topologies Redundant Star, Ring
 - Device-level Topology Ring
- Use fiber media and SFPs for all interswitch links – ring and redundant star switch-level topologies

Design and Implement a Robust Physical Layer

Resiliency

Environment Classification - MICE Guidance for Selecting Cables for EtherNet/IP Network **Cable Selection** ENET-WP007 More than cable 1585 Media This guide is erranged to help the user select cabling based on the application environmental conditions, and mechanical requirement Connectors Connect. Manage. Autom Patch panels Cable management PANDUIT Noise mitigation Industrial Ethernet Physical Media Planning Bonding, Shielding and Grounding Infrastructure Reference Architecture and Rockwell Installation Manual Automation Standard Physical Media **Design Guide Encompass Product Partner** Wired vs. Wireless Copper vs. Fiber 3 - Copper Media Fiber Optic Infrastructure UTP vs. STP **ODVA Guide** Application Guide 2 - Fiber Media epicying a Fiber Clotic Physical nfrastructure to Support Corverged Plantwide EtherNet/E Single-mode vs. Multi-mode 1 - Fiber Solutions SFP – LC vs. SC Standard Topology Choices Fiber Guide Switch-Level, Device-Level and Hybrid ENET-TD003

Rockwel

Environmental Focus – M.I.C.E.

Resiliency

- M.I.C.E. provides a method of categorizing the environmental classes for each plant Cell/Area Zone.
 The MICE environmental classification is a measure of product robustness:
 - Specified in ISO/IEC 24702
 - Part of TIA-1005 and ANSI/TIA-568-C.0 standards
- This provides for determination of the level of "hardening" required for the network media, connectors, pathways, devices and enclosures.
- Examples of rating:
 - 1585 Industrial Ethernet Media : M₃I₃C₃E₃
 - M12: M₃I₃C₃E₃
- RJ-45: M₁I₁C₂E₂

Select best media for your needs

Resiliency

	Unshielded Twisted Pair (UTP)	Shielded Twisted Pair (STP)			
UTP vs. STP	Costs less	Excellent immunity from EMI and RFI noise			
011 VS. 011	Installs faster	Can locate cable close to source of noise			
Smaller diameter, more flexible W		Well suited for more rigorous environments			
0.175	CAT5e	CAT6a			
CAT5e vs. CAT6a	Costs Less	Higher signal to noise ration; performance margins			
e, i ou	Suitable for speeds of less than a Gbps	Designed to deliver Gbps performance			
	Copper	Fiber			
Copper vs. Fiber	Termination and installation is faster	Cost of fiber transceivers is higher			
•••	Less fragile	Use when excessive EMI noise is present			
	Distances of less than 100m	Use when distance is a factor (over 100m)			
	Multi-mode	Single-mode			
Multi-mode vs. Single-	For distances of up to 550m @ 1Gbps and 2km @ 100 Mbps	Longer distances (up to 40km)			
mode Fiber	Lower cost transceivers, connectors and installation	High bandwidth capabilities			
	Higher fiber cost, but lower total system cost	Lower fiber cost, but higher total system cost			

Key Tenet Time-critical Data - Time Synchronization and Data Prioritization

Time Synchronization – CIP Sync

Time-critical Data - Time Synchronization

- CIP[™] Extension
- Defines time synchronization services and object for CIP Networks
 - Allows distributed control components to share a <u>common notion of time</u>
- Implements IEEE-1588 precision clock synchronization protocol
 - Referred to as precision time protocol (PTP)
 - Provides +/- 100 ns synchronization (hardware-assisted clock)
 - Provides +/- 100 µs synchronization (software clock)

Time Synchronized Applications such as:

- Input time stamping
 - Alarms and Events
 - Sequence of Events (SOE)
 - First fault detection
- Scheduled outputs, synchronized actuation
- **Coordinated Motion**

Object Library

(Communications, Applications, Time Synchronization

Time Synchronization – CIP Sync, IEEE 1588 Precision Time Protocol

Time-critical Data - Time Synchronization

CIP Sync Defines

- System Time data representation
- Clock Model for each node
- Timestamp Step Compensation Algorithm
- Time Sync Object for CIP
- PTP Clock Types
 - Ordinary
 - Grandmaster (GM)
 - Boundary Clock
 - Transparent Clock

PUBLIC Copyright © 2019 Rockwell Automation, Inc. All Rights Reserved

Data Prioritization – Quality of Service (QoS)

Time-critical Data - Data Prioritization

- QoS helps mitigate the following network issues:
 - End-to-end delay
 - Fixed delay latency
 - Variable delay jitter
 - Bandwidth capacity issues
 - Packet loss
- QoS design considerations:
 - Provides preferential forwarding treatment to some data traffic, at the expense of others
 - QoS prioritizes traffic into different service levels
 - Allows for more predictable service for different applications and traffic types

Plant-wide / Site-wide Network Integrated Architecture – Intelligent Motor Control

86

Data Prioritization – Quality of Service (QoS) Markings

Time-critical Data - Data Prioritization

Layer 3 ToS Type of Service Differentiated Server Code Point

	ersior .engti		ToS Byte	Len	ID	Offset	TTL	Proto	FCS	IP SA	IP DA	Data
											IPv4	Packet
	7	6	5	4	3	2 1	0		C4d	and ID.		
- [IP Pr	ecede	ence		Ür	nused			Stand	ard IPv4	+	
	Dif	fServ	Code	Point	(DSCI	P) IP I	ECN		DiffSe	rv Exte	nsions	

PUBLIC Copyright © 2019 Rockwell Automation, Inc. All Rights Reserved

Data Prioritization –Quality of Service (QoS) Policies

Time-critical Data - Data Prioritization

- QoS classification based on Layer attributes:
 - Layer 2 Destination MAC Address, Layer 2 EtherType
 - Layer 3 Source / Destination IP Address
 - Layer 4 TCP / UDP Source or Destination Port Number
 - e.g. UDP 2222 and TCP 44818

ODVA EtherNet/IP QoS Specification

- Layer 2 ... Class of Service (CoS) ... 802.1D/Q
- Layer 3 ... type of service (ToS) ... DiffServ Code Point (DSCP)

Data Prioritization – ODVA Quality of Service (QoS) Policies

Time-critical Data - Data Prioritization

Traffic Type	CIP Priority	DSCP Layer 3	CoS Layer 2	CIP Traffic Usage	
PTP event (IEEE 1588)	n/a	59	7	n/a	_
PTP General (IEEE 1588)	n/a	47	5	n/a	T E
CIP class 0/1	Urgent (3)	55	6	CIP Motion	
	Scheduled (2)	47	5	Safety I/O I/O	
	High (1)	43	5	I/O	
	Low (0)	31	3	No recommendation at present	
CIP UCMM CIP class 2/3	All	27	3	CIP messaging	

THE CIP NETWORKS LIBRARY Volume 2 EtherNet/IP Adaptation of CIP Edition 1.22, November 2016

Data Prioritization – ODVA Quality of Service (QoS) Policies

Time-critical Data - Data Prioritization

- Embedded Switch Technology Linear and Ring Topologies
- ODVA has specified QoS markings for CIP and PTP traffic

CIP Priority	DSCP Layer 3	CoS Layer 2	CIP Traffic Usage
Highest	59	7	Beacon, PTP Event
High	55		CIP Motion
Low	43, 47		I/O, Safety I/O, PTP General
Lowest	0-42, 44-46, 48-54, 56-58, 60-63	1, 2, 3, 4, 5, 6	Best effort

Key Tenet Wireless - Mobility

CPwE WLAN Wireless - Mobility

Autonomous WLAN Architecture

Unified WLAN Architecture

PUBLIC Copyright © 2019 Rockwell Automation, Inc. All Rights Reserved

Key Tenet Holistic & Diverse Defense-in-Depth Security

CPwE Industrial Security Framework

PUBLIC Copyright © 2019 Rockwell Automation, Inc. All Rights Reserved

Key Tenet Convergence-Ready Network Solutions

Design and Implementation Considerations Convergence-Ready Network Solutions

Design and deployment considerations that a partner (e.g. OEM, SI, Contractor) has to take into account to achieve seamless integration of their solution (e.g. equipment, skid, machine) into their customers' plant-wide/site-wide network infrastructure.

Alignment with End User - Network Services:

Convergence-Ready Network Solutions

- Use of a common industrial network technology that fully uses standard Ethernet and IP networking technology as the multi-discipline industrial network infrastructure.
- IP addressing schema
 - Who manages? End User (OT/IT) or OEM?
 - Address range (class), subnet, default gateway (routability)

- Implementation conventions - static/dynamic, hardware/software configurable, NAT/DNS

- Use Common Layer 2 and Layer 3 Network Services
 - Switches managed vs. unmanaged, industrial vs. COTS, system vs. component approach
 - Segmentation, data prioritization
 - Topologies switch-level, device-level, hybrid
 - Availability loop prevention, redundant path topologies with resiliency protocols
 - Time Synchronization Services
 - IEEE 1588 Precision Time Protocol (PTP w/E2E) first fault, SOE, Motion

The OEM Guide to Networking

ENET-RM001_-EN-P

Network Architecture Icon Key

Layer 2 Access Switch, Catalyst 2960

Layer 2 Access, Industrial Ethernet Switch (IES), Stratix[®] 2500, Stratix 5700, Stratix 5400, Stratix 8000

Layer 2 IES with NAT, Stratix 5700, Stratix 5400

Layer 2 IES with NAT and Connected Routing, Stratix 5700, Stratix 5400

Multi-Layer Switch - Layer 2 and Layer 3, Stratix 8300, Stratix 5700, Stratix 5400, Stratix 5410

Layer 3 Distribution Switch Stack, Catalyst 3750-X, Catalyst 3850

Layer 3 Core Switch, Catalyst 4500, 4500-X, 6500, 6800

Layer 3 Core Switch with Virtual Switching System (VSS) Catalyst 4500-X, 6500, 6800

Layer 3 Router, Stratix 5900

Layer 3 Router with Zone-based Firewall, Stratix 5900

PUBLIC Copyright © 2019 Rockwell Automation, Inc. All Rights Reserved

Firewall, Adaptive Security Appliance (ASA) 55xx

Industrial Firewall, Stratix 5950

Autonomous Wireless Access Point (AP)

Wireless workgroup bridge (WGB)

Unified Wireless Lightweight Access Point (LWAP), Catalyst 3602E LWAP

Unified Wireless LAN Controller (WLC), Cisco 5508 WLC

Unified Computing System (UCS), UCS-C series

Identity Services Engine (ISE) for Authentication, ISE - PAN/PSN/MnT

Layer 2 Access Link (EtherNet/IP Device Connectivity)

- Layer 2 Interswitch Link/802.1Q Trunk
- Layer 3 Link

CPwE Architectures - Cisco and Rockwell Automation®

- <u>CPwE</u>website
- Overview Documents
 - <u>Alliance Profile</u>
 - <u>Top 10 Recommendations for</u> <u>Plant-wide EtherNet/IP</u> <u>Deployments</u>
 - <u>Design Considerations for</u> <u>Securing Industrial</u> <u>Automation and Control</u> <u>System Networks</u>

CPwE Architectures - Cisco and Rockwell Automation®

Торіс	Design Guide	Whitepaper
Design Considerations for Securing IACS Networks	N/A	ENET-WP031A-EN-P
Converged Plantwide Ethernet – Baseline Document	ENET-TD001E-EN-P	N/A
Deploying 802.11 Wireless LAN Technology within a CPwE Architecture	ENET-TD006A-EN-P	ENET-WP034A-EN-P
Deploying Identity and Mobility Services within a CPwE Architecture	ENET-TD008B-EN-P	ENET-WP037C-EN-P
Securely Traversing IACS Data Across the Industrial Demilitarized Zone (IDMZ)	ENET-TD009B-EN-P	ENET-WP038B-EN-P
Deploying Network Address Translation within a CPwE Architecture	ENET-TD007A-EN-P	ENET-WP036A-EN-P
Migrating Legacy IACS Networks to a CPwE Architecture	ENET-TD011A-EN-P	ENET-WP040A-EN-P
Deploying A Resilient Converged Plantwide Ethernet Architecture	ENET-TD010B-EN-P	ENET-WP039D-EN-P
Site-to-site VPN to a CPwE Architecture	ENET-TD012A-EN-P	N/A
Deploying Industrial Firewalls within a CPwE Architecture	ENET-TD002A-EN-P	ENET-WP011B-EN-P
Deploying Device Level Ring within a CPwE Architecture	ENET-TD015A-EN-P	ENET-WP016C-EN-P
OEM Networking within a CPwE Architecture	ENET-TD018A-EN-P	ENET-WP018A-EN-P
Cloud Connectivity to a Converged Plantwide Ethernet Architecture	ENET-TD017A-EN-P	ENET-WP019B-EN-P
Deploying Industrial Data Center within a CPwE Architecture	ENET-TD014A-EN-P	ENET-WP013A-EN-P
Scalable Time Distribution within a Converged Plantwide Ethernet Architecture	ENET-TD016A-EN-P	ENET-WP017A-EN-P
Network Security within a Converged Plantwide Ethernet Architecture	ENET-TD019A-EN-P	ENET-WP023A-EN-P
PUBLIC Copyright © 2019 Rockwell Automation, Inc. All Rights Reserved		Automation ¹⁰

Rockwell Automation® Reference Documents

- Ethernet Design Considerations Reference Manual
 - ENET-RM002C-EN-P
 - EtherNet/IP Overview, Ethernet Infrastructure Components, EtherNet/IP Protocol, Predict System Performance
- EtherNet/IP IntelliCENTER[®] Reference Manual (MCC-RM001)

- The OEM Guide to Networking
 - ENET-RM001A-EN-P
 - This guide is intended to help OEMs understand relevant technologies, networking capabilities and other considerations that could impact them as they develop EtherNet/IP solutions for the machines, skids or equipment they build
- Segmentation Methods Within the Cell/Area Zone <u>ENET-AT004B-EN-E</u>

Rockwell Automation® Tools

Integrated Architecture Builder (IAB)

- Updates and additions to better-reflect CPwE structure, hierarchy and best practices
- Improved Switch Wizard for distribution (e.g. Stratix[®] 5410) and access (e.g. Stratix 5700)
- Easier to create a large EtherNet/IP network with many topologies
- CIP traffic is measured per segment, not just controller scanner and adapter centric

EtherNet/IP Capacity Tool

- System Configuration Drawings
 - Updates and additions to better reflect CPwE recent enhancements

Rockwell Automation® Industrial Security Website

complex automation solutions. Our industrial secu We enable transformational technologies that rely	imprehensive approach beyond just network securit rity services will help you effectively assess, implem on enterprise connectivity. The security landscape i so that effectively, you need a partner who you can	ent, and maintain ICS security within operation is ever-changing so you need a partner who will
and the second sec		Q
Security Services	Products and Solutions	Advisories and Support
Field consulting services to help assess design, implement, and manage solutions	Network security, content protection, tamper detection, and access control solutions	Stay current with patch managemer subscription licensing, and advisorie
Access the Experts >	Explore Solutions >	Protect Your Systems >
TRUSTED AND TRANSP/ Improving Product Security and Partner Building more secure systems starts with using more we use a robust, structured, and secure developm the beginning. Our processes adhere to a corpora program managed by our product security office. Ongoing training on the standards, technologies, a policies and practices. Vulnerabilities do happen, Using our incident response process, our custome mitigation plans, and provides timely communication	ing with Customers to Manage Risk res secure products. Our customers can trust that ent lifecycle to build security into products from te-wide security standards and requirements Jur security subject matter experts receive and tools needed to implement the latest security and when they do, we have a plan in place response team evaluates the threat, develops	Security Development Lifecycle Model

Home + Capabilities + Industrial Security

🖻 Share \varTheta Print

You have people and assets to protect. It is time to mitigate potential threats and build a holistic security system to enable deeper visibility into operations, improve collaboration among people, and obtain even higher levels of efficiency. We can help you achieve The Connected Enterprise with a comprehensive portfolio of industrial security solutions and products.

SECURE NETWORK INFRASTRUCTURE

Control Access to the Network, and Detect Unwanted Access and Activity

A resilient industrial network security system is essential to ensure that proper access is only given to the right people and that data is protected against manipulation or theft. Our validated network security solutions, based on standard Ethernet/IPTM, enable unified plant-to-enterprise integration. We can help optimize networks for use in industrial applications and the use of enabling technologies including mobility, data analytics, and cloud.

- Secure the perimeter and enable IT connectivity with the Industrial Demilitarized Zone
 Enable remote connectivity of people, process, and information with remote access and system monitoring
- Unify enterprise and plant floor security controls with Stratix® managed switches and industrial firewalls, such as the Stratix 5950 Security Appliance
- Reduce implementation risks by using tested and validated network designs from Cisco and Rockwell Automation

Learn More About Our Stratix 5950 Security Appliance

View Networks and Security Design Guides and Whitepapers

Website:

- <u>http://www.odva.org/</u>
- EtherNet/IP
 - <u>https://www.odva.org/Technology-</u> <u>Standards/EtherNet-IP/OverviewSecuring</u> <u>EtherNet/IP™ Networks</u>
- EtherNet/IP Network Infrastructure Guide
 - <u>https://www.odva.org/Portals/0/Library/Pu</u> <u>blications_Numbered/PUB00035R0_Infras</u> <u>tructure_Guide.pdf</u>

- Common Industrial Protocol (CIP™)
 - <u>https://www.odva.org/Technology-</u> <u>Standards/Common-Industrial-Protocol-</u> <u>CIP/Overview</u>
- The Family of CIP Networks
 - <u>https://www.odva.org/Portals/0/Library/Publica</u> <u>tions_Numbered/PUB00123R1_Common-</u> <u>Industrial_Protocol_and_Family_of_CIP_Netw</u> <u>orks.pdf</u>
- CIP Security
 - <u>https://www.odva.org/Technology-</u> <u>Standards/Common-Industrial-Protocol-</u> <u>CIP/CIP-Security</u>